–
David Pennock:
[…] Each order is associated with a decision variable x that ranges between 0 and 1, encoding the fraction of the order that the auctioneer can accept. There is one constraint per outcome that ensures that the auctioneer never loses money across all outcomes. The choice of objective function depends on the auctioneer’s goals, but something like maximizing the fill fraction makes sense.
Once the program is set up, the auctioneer solves for the x variables to determine which orders to accept in full (x=1), which to accept partially (0<-x<-1), and which to reject (x=0). The program can be solved either in batch mode, after waiting to collect a number of orders, or in continuous mode immediately as new orders arrive. Batch mode corresponds to a call market. Continuous mode corresponds to a continuous auction, a generalization of the continuous double auction mechanism of the stock market.
Each order consists of a price, a quantity, and an outcome bundle. Traders can just as easily bet on single outcomes, negations of outcomes, or sets of outcomes (e.g., all Western Conference NBA teams). Every order goes into the same pool of liquidity no matter how it is phrased.
Price quotes are queries to the linear program of the form “at what price p will this order be accepted in full?” (I believe that bounds on the dual variables of the LP can be interpreted as bid and ask price quotes.) […]
Go reading all the post. There is a bunch of good comments…- the best was submitted by Mike Giberson…-