Betting on Copenhagen

Emile Servan-Schreiber comments on a New York Times opinion piece:

The idea that betting could help us gain clarity on some controversial scientific questions has first been proposed by George Mason economics professor Robin Hanson in 1992 in a paper entitled &#8220-Could Gambling Save Science&#8221- and available online here: http://hanson.gmu.edu/gamble.html

The benefits of creating prediction markets about controversial climate-change issues in particular is further developed on Nate Silver&#8217-s blog and in this presentation given at CalTech in 2004: http://us.newsfutures.com/home/environmentalFutures.html

Nate Silver: InTrade is dumb. We need serious exchanges for event derivatives.

No Gravatar

Nate Silver:

But Intrade, although it&#8217-s a product I greatly appreciate, has some problems when it comes to efficiently pricing futures. It&#8217-s hard to get money into the site. The exchange falls into a legal gray zone. Transaction fees are comparatively high. And Intrade is stingy about paying interest on deposits, which adds a cost to having your money tied up. Not that many people have heard of Intrade, moreover, which isn&#8217-t true for the stock market. And because of network effects, it&#8217-s likely that volume/liquidity is somewhat nonlinear with respect to the number of participants in the market. So if these encumberances reduce the number of participants by, say, a factor of 10, it&#8217-s likely that trading volumes are depressed by some multiple of that.

Prediction markets: Sticking to the letter of the contract VERSUS Interpreting intent

No Gravatar

Chris Hibbert (of Zocalo):

I disagree, Chris. Much experience on FX has shown that interesting questions (those that aren’t routine repetitions of previous questions) often result in realities that diverge from the obvious expectations of nearly everyone involved in describing the possibilities. In those situations, we’ve found that trying to interpret intent leads to more confusion than sticking to the letter of the question as asked.

If a [prediction market] sticks to its written description of what the claims mean, then careful readers are rewarded, and they learn that they have a good chance to predict how the judge will interpret the question and events in the world. If questions are determined based on “intent”, then everyone has to spend time deciding which aspect of the question the judge will decide was more important, when reality decides not to conform to the question’s expectations.

Sometimes (as you argue was the case with the North Korea question) the result is surprising and disappointing, but choosing the other approach leads to much less participation as people who see that something surprising is preparing to happen or has happened back out of their bets rather than waiting to find out what the judge decides is important. I’m much happier when the participants spend their time figuring out what will happen in the world, rather than when they have to spend their time predicting how the judge will react. Strict construction gives us a predictable world.

See also Jason Ruspini&#8217-s comment on the same topic&#8230-

Robin Hanson: My best idea was prediction markets.

Robin Hanson&#8216-s auto-biography (i.e., how Our Master Of All Universes views HimSelf):

robin-hanson-drink

Robin Hanson:

Do you find it hard to summarize yourself in a few words? Me too.

But I love the above quote. I have a passion, a sacred quest, to understand everything, and to save the world. I am addicted to a€?viewquakesa€?, insights which dramatically change my world view. I loved science fiction as a child, and have studied physics, philosophy, artificial intelligence, economics, and political science a€” all fields full of such insights. Unfortunately, this also tempted me to leave subjects after mastering their major insights.

I also have a rather critical style. I beat hard on new ideas, seek out critics, and then pledge my allegiance only to those still left standing. In conversation, I prefer to identify a claim at issue, and then focus on analyzing it, rather than the usual quick tours past hundreds of issues. I have always asked questions, even when I was very young.

I have little patience with those whose thinking is sloppy, small, or devoid of abstraction. And Ia€™m not a joiner– I rebel against groups with a€?our beliefsa€?, especially when members must keep criticisms private, so as not to give ammunition to a€?them.a€?A  I love to argue one on one, and common beliefs are not important for friendship a€” instead I value honesty and passion.

In a€?77 I began college (UCI) in engineering, but switched to physics to really understand the equations.A  Two years in, when physics repeated the same concepts with more math,A  I studied physics on my own, skipping the homework but acing the exams.A  To dig deeper, I did philosophy of science grad school (U Chicago), switched back to physics, and was then seduced to Silicon Valley.

By day I did artificial intelligence (Lockheed, NASA), and by night I studied on my own (Stanford) and hung with Xanadua€™s libertarian web pioneers and futurists.A  I had a hobby of institution designmy best idea was idea futures, now know as prediction markets. Feeling stuck without contacts and credentials, I went for a Ph.D. in social science (Caltech).

The physicist in me respected only econ experiments at first, but I was soon persuaded econ theory was full of insight, and did a theory thesis, and a bit of futurism on the side.A  I landed a health policy postdoc, where I was shocked to learn of medicinea€™s impotency.A  I finally landed a tenure-track job (GMU), and also found the wide-ranging intellectual conversations Ia€™d lacked since Xanadu.

My Policy Analysis Market project hit the press shit fan in a€?03, burying me in media attention for a while, and helping to kickstart the prediction market industry, which continues to grow and for which I continue to consult.A  The press flap also tipped me over the tenure edge in a€?05- my colleagues liked my being denounced by Senators. :)Tenure allowed me to maintain my diverse research agenda, and to start blogging at Overcoming Bias in November a€?06, about the same time I became a research associate at Oxforda€™s Future of Humanity Institute.

My more professional bio is here.

Robin Hanson is an associate professor of economics at George Mason University, and a research associate at the Future of Humanity Institute of Oxford University. After receiving his Ph.D. in social science from the California Institute of Technology in 1997, Robin was a Robert Wood Johnson Foundation health policy scholar at the University of California at Berkeley. In 1984, Robin received a masters in physics and a masters in the philosophy of science from the University of Chicago, and afterward spent nine years researching artificial intelligence, Bayesian statistics, and hypertext publishing at Lockheed, NASA, and independently.

Robin has over 70 publications, including articles in Applied Optics, Business Week, CATO Journal, Communications of the ACM, Economics Letters, Econometrica, Economics of Governance, Extropy, Forbes, Foundations of Physics, IEEE Intelligent Systems, Information Systems Frontiers, Innovations, International Joint Conference on Artificial Intelligence, Journal of Economic Behavior and Organization, Journal of Evolution and Technology, Journal of Law Economics and Policy, Journal of Political Philosophy, Journal of Prediction Markets, Journal of Public Economics, Medical Hypotheses, Proceedings of the Royal Society, Public Choice, Social Epistemology, Social Philosophy and Policy, Theory and Decision, and Wired.

Robin has pioneered prediction markets, also known as information markets or idea futures, since 1988. He was the first to write in detail about people creating and subsidizing markets in order to gain better estimates on those topics. Robin was a principal architect of the first internal corporate markets, at Xanadu in 1990, of the first web markets, the Foresight Exchange since 1994, and of DARPA&#8217-s Policy Analysis Market, from 2001 to 2003. Robin has developed new technologies for conditional, combinatorial, and intermediated trading, and has studied insider trading, manipulation, and other foul play. Robin has written and spoken widely on the application of idea futures to business and policy, being mentioned in over one hundred press articles on the subject, and advising many ventures, including Consensus Point, GuessNow, Newsfutures, Particle Financial, Prophet Street, Trilogy Advisors, XPree, YooNew, and undisclosable defense research projects.

Robin has diverse research interests, with papers on spatial product competition, health incentive contracts, group insurance, product bans, evolutionary psychology and bioethics of health care, voter information incentives, incentives to fake expertize, Bayesian classification, agreeing to disagree, self-deception in disagreement, probability elicitation, wiretaps, image reconstruction, the history of science prizes, reversible computation, the origin of life, the survival of humanity, very long term economic growth, growth given machine intelligence, and interstellar colonization.

Robin Hanson: My best idea was prediction markets.

Robin Hanson‘s auto-biography (i.e., how Our Master Of All Universes views HimSelf):

robin-hanson-drink

Robin Hanson:

Do you find it hard to summarize yourself in a few words? Me too.

But I love the above quote. I have a passion, a sacred quest, to understand everything, and to save the world. I am addicted to “viewquakes”, insights which dramatically change my world view. I loved science fiction as a child, and have studied physics, philosophy, artificial intelligence, economics, and political science — all fields full of such insights. Unfortunately, this also tempted me to leave subjects after mastering their major insights.

I also have a rather critical style. I beat hard on new ideas, seek out critics, and then pledge my allegiance only to those still left standing. In conversation, I prefer to identify a claim at issue, and then focus on analyzing it, rather than the usual quick tours past hundreds of issues. I have always asked questions, even when I was very young.

I have little patience with those whose thinking is sloppy, small, or devoid of abstraction. And I’m not a joiner; I rebel against groups with “our beliefs”, especially when members must keep criticisms private, so as not to give ammunition to “them.”  I love to argue one on one, and common beliefs are not important for friendship — instead I value honesty and passion.

In ‘77 I began college (UCI) in engineering, but switched to physics to really understand the equations.  Two years in, when physics repeated the same concepts with more math,  I studied physics on my own, skipping the homework but acing the exams.  To dig deeper, I did philosophy of science grad school (U Chicago), switched back to physics, and was then seduced to Silicon Valley.

By day I did artificial intelligence (Lockheed, NASA), and by night I studied on my own (Stanford) and hung with Xanadu’s libertarian web pioneers and futurists.  I had a hobby of institution design; my best idea was idea futures, now know as prediction markets. Feeling stuck without contacts and credentials, I went for a Ph.D. in social science (Caltech).

The physicist in me respected only econ experiments at first, but I was soon persuaded econ theory was full of insight, and did a theory thesis, and a bit of futurism on the side.  I landed a health policy postdoc, where I was shocked to learn of medicine’s impotency.  I finally landed a tenure-track job (GMU), and also found the wide-ranging intellectual conversations I’d lacked since Xanadu.

My Policy Analysis Market project hit the press shit fan in ‘03, burying me in media attention for a while, and helping to kickstart the prediction market industry, which continues to grow and for which I continue to consult.  The press flap also tipped me over the tenure edge in ‘05; my colleagues liked my being denounced by Senators. :)   Tenure allowed me to maintain my diverse research agenda, and to start blogging at Overcoming Bias in November ‘06, about the same time I became a research associate at Oxford’s Future of Humanity Institute.

My more professional bio is here.

Robin Hanson is an associate professor of economics at George Mason University, and a research associate at the Future of Humanity Institute of Oxford University. After receiving his Ph.D. in social science from the California Institute of Technology in 1997, Robin was a Robert Wood Johnson Foundation health policy scholar at the University of California at Berkeley. In 1984, Robin received a masters in physics and a masters in the philosophy of science from the University of Chicago, and afterward spent nine years researching artificial intelligence, Bayesian statistics, and hypertext publishing at Lockheed, NASA, and independently.

Robin has over 70 publications, including articles in Applied Optics, Business Week, CATO Journal, Communications of the ACM, Economics Letters, Econometrica, Economics of Governance, Extropy, Forbes, Foundations of Physics, IEEE Intelligent Systems, Information Systems Frontiers, Innovations, International Joint Conference on Artificial Intelligence, Journal of Economic Behavior and Organization, Journal of Evolution and Technology, Journal of Law Economics and Policy, Journal of Political Philosophy, Journal of Prediction Markets, Journal of Public Economics, Medical Hypotheses, Proceedings of the Royal Society, Public Choice, Social Epistemology, Social Philosophy and Policy, Theory and Decision, and Wired.

Robin has pioneered prediction markets, also known as information markets or idea futures, since 1988. He was the first to write in detail about people creating and subsidizing markets in order to gain better estimates on those topics. Robin was a principal architect of the first internal corporate markets, at Xanadu in 1990, of the first web markets, the Foresight Exchange since 1994, and of DARPA’s Policy Analysis Market, from 2001 to 2003. Robin has developed new technologies for conditional, combinatorial, and intermediated trading, and has studied insider trading, manipulation, and other foul play. Robin has written and spoken widely on the application of idea futures to business and policy, being mentioned in over one hundred press articles on the subject, and advising many ventures, including Consensus Point, GuessNow, Newsfutures, Particle Financial, Prophet Street, Trilogy Advisors, XPree, YooNew, and undisclosable defense research projects.

Robin has diverse research interests, with papers on spatial product competition, health incentive contracts, group insurance, product bans, evolutionary psychology and bioethics of health care, voter information incentives, incentives to fake expertize, Bayesian classification, agreeing to disagree, self-deception in disagreement, probability elicitation, wiretaps, image reconstruction, the history of science prizes, reversible computation, the origin of life, the survival of humanity, very long term economic growth, growth given machine intelligence, and interstellar colonization.

Patrick Young (InTrades fifth Beatle) still cant figure out the industry he helped created.

No Gravatar

Well, we&#8217-re here to help out the lost souls. :-D

Patrick Young:

patrick-l-young

Director and Founder: Intrade

Privately Held- 11-50 employees- Capital Markets industry

September 1999 – February 2002 (2 years 6 months)

I was one of the founders and a director of the company Intrade which set up one of the first sports exchanges in Europe.

Nowadays there is a vogue for calling these businesses prediction markets&#8230-which presumably mans there must be markets that don&#8217-t predict events and trade on past [occurrence]?

No, it means that prediction markets are optimized for simplicity and usability &#8212-as opposed to the other derivative markets, which are quite complicated and inaccessible to the mainstream people.

Were prediction markets useless during the H1N1 breakout?

No Gravatar

Lance Fortnow:

Might this be an instance where prediction markets greatly out-performed the experts? In short, no. There were relevant markets but two big problems:

  • No one thought to create a market for the number of flu cases over a couple of thousand.
  • Prediction markets require a verifiable outcome so they were based on CDC confirmed cases. But after the flu turned out not to be that dangerous, the CDC stopped confirming most cases and there were less than 7500 confirmed cases by the end of May.

Prediction Market Definition -now updated with the name of Chris Hibbert and Eric Cramptons cult leader built into.

No Gravatar

Prediction markets produce dynamic, objective probabilistic predictions on the outcomes of future events by aggregating disparate pieces of information that the traders bring when they agree on prices. These event derivative traders feed on the primary indicators &#8212-i.e., the primary sources of information. (Garbage in, garbage out&#8230- Intelligence in, intelligence out&#8230-) Hence, prediction markets are meta forecasting tools.

Each prediction exchange organizes its own set of real-money and/or play-money markets, using either a CDA or a MSR mechanism.

A prediction market is a market for a contract that yields payments based on the outcome of a partially uncertain future event, such as an election. A contract pays $100 only if candidate X wins the election, and $0 otherwise. When the market price of an X contract is $60, the prediction market believes that candidate X has a 60% chance of winning the election. The price of this event derivative can be interpreted as the objective probability of the future outcome (i.e., its most statistically accurate forecast). A 60% probability means that, in a series of events each with a 60% probability, then 60 times out of 100, the favored outcome will occur- and 40 times out of 100, the unfavored outcome will occur.

The value of a set of prediction markets consists in the added accuracy that these prediction markets provide relative to the other forecasting mechanisms, times the value of accuracy in improved decisions, minus the cost of maintaining these prediction markets, relative to the cost of the other forecasting mechanisms. According to Robin Hanson, a highly accurate prediction market has little value if some other forecasting mechanism(s) can provide similar accuracy at a lower cost, or if very few substantial decisions are influenced by accurate forecasts on its topic.